第四十二章:奇怪的问题和奇怪的答案 (第3/3页)
这可能吗?
一个高中生,数学能力比大部分的数学教授都要强?
还是说这种解题方法真的有这么简便?亦或者,是他没解出来,写了个错误的解答过程和答案?
张伟平情不自禁的咽了下口水,伸手接过稿纸看去。
他没先去看证明过程,而是直接看向了最底部的答案。
(116.72)(39.56)(14.1225)!
答案完全正确!
看着稿纸上的三组数字,张伟平呼吸顿时沉重了起来。
答案正确,那么过程大概率也会是正确的。
没有正确的推到过程,随便编写几个答案是不可能刚好对上的这组答案的。
如果过程正确,那这种解题思路和方法......
......
脑海中念头划过,张伟平迅速将目光对上了占据大半页篇幅的求证过程。
半个小时过去,他终于长舒了一口气,抬起头目光熠熠的盯着徐川,像看怪物一样。
眼前的这名学生,他现在是真的看不懂了。
对于绝大部分的高中生,哪怕是能杀入IMO的竞赛生来说,高中三年也基本都是打基础的阶段。
就算是天才,能在高中阶段积累足够的大学知识,但积累知识和要将这些知识如鱼得水般运用起来,也完全是两个不同的概念。
更何况是这种创新,就更难得了。
如何没有将脑海中的知识融汇贯通,想要创新是不可能的事情。
更关键的是,眼下这种解题方法并不是单纯的数学领域的知识。
利用拉普拉斯变换和双重有限积分将狄利克雷函数转变成狄利克雷积分,再运用复变函数求积分,然后求解。
这种解题思路,虽说证明过程是单纯的数学语言,但思路却是融合了物理领域的阻尼自由振动方程计算临界和线性无关特解方面的计算公式
相比较纯数学领域的创新,这种创新难度更高。
毕竟一个人精通的知识区域一般都只有一个,能将数学物理融会贯通的天才极少。
就算有,也一般都是进入大学甚至研究生后才展露出这种天赋。
高中阶段,他想都不敢想。
.....