第704章 一道数学题引发的(上) (第2/3页)
文一样,他也跳了题。其实不单单刘冬阳、黄博文二人,便是李坦然、赵中举等人一样不断跳题。
他们想看看后面的题目,有没有自己能做的,毕竟与昨日考试不一样,今日算术题,还是有迹可寻。
看到几何题目,各人纷纷拿出自己的矩与圆规,进考房时,考官还发下了铅笔。那矩又称曲尺,木匠多在用之,不过做算术题,矩物自然也需用到,还有圆规,早在夏朝便有出现。
黄博文仔细看着这道题:“假令圆城一所,不知周径,四面开门,门外纵横各有十字大道。其西北十字道头定为干地,其东北十字道头定为艮地,其东南十字道头定为巽地,其西南十字道头定为坤地。……或问:甲乙二人俱在干地,乙东行三百二十步而立。甲南行六百步望见乙,问径几里?”
“答题需写解法、演草。”
黄博文深深呼了口气:“吾以割圆术应之!”
他用矩物在草稿上画了个三角形,三个顶点分别定为天、地、干三点,然后用圆规画了个内切圆代表圆城,他推算着:“有言数之法皆出于圆方,圆出于方,方出于矩,矩出于九九八十一。故折矩,以为句广三,股修四,径隅五……”
他勾三股四的做图,定内切圆圆心为心,以过心的垂直线从上至下分别与三角形、内切圆交于日、南、北三点。以过心的水平线从左至右分别和三角形、内切圆交于川、东、西三点,等等,分别算出勾与股,然后求其弦。
刘冬阳也是深深吸口气,开始画就草图:“余设直角三角形,分设甲、乙、丙三点……”
黄博文在算盘上哗哗的打着:“勾股求其弦,以勾乘股,倍之为实以为果……”
看着算盘上的结果,他满意的提笔写下,这时刘冬阳也用欧氏几何公式算出勾与股,然后用勾股定理得到结果,他写道:“答曰:城径二百四十步。”
虽然此时几何题已经考到《周髀算经》上的内容,不过第一题较为简单,便是赵中举磨磨蹭蹭,画了半天图,最后也做出来了。
下面几道几何题相对简单,便如这道:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”
黄博文与刘冬阳分别用中西法,也同时算了出来。
不过下面的题就难起来了,却是接上面那个圆城,却说:“或问出西门南行四百八十步有树,出北门东行二百步见之,问径几里?”
黄博文用力揉了一会脸。又动用天元术:“吾立天元一为半径,置南行步在地……”
他推算着:“以二行步相乘为实,二行步相并为从,一步常法。得半径。”
刘冬阳也是画图:“余设半径为未知数……”
赵中举又回头做了,李坦然终于算出那鸡的问题,奋起直追。
“今有积以和乘之,减积,余以平乘之加和。得一十七万一百六十二步。只云和为益实。四为益方,三为从上廉,二为益下廉,一为正隅,三平方开之,如平四分之一。问,长,平各几何?”
黄博文答:“平一十二步,长三十步。”
“今有黄方乘直积得二十四步,只云股弦和九步。问勾几何?”
黄博文答:“三步。”
“今有股幂减弦较较与股乘勾等。只云勾幂加弦较和与勾乘弦同。问股几何?”
(本章未完,请点击下一页继续阅读)