返回

第二百八十章 找到你了,柯南!(中)

首页
关灯
护眼
字:
上一章 回目录 下一页 进书架
最新网址:m.llskw.org
    第二百八十章 找到你了,柯南!(中) (第1/3页)

    解。

    这是数学中一个非常特殊的字,具有宏观意义上的纠缠态。

    这个字后面可能空无一物,也可能会有洋洋洒洒的内容铺满版面。

    同时哪怕是铺满版面的内容,最终的结果也很可能和空无一物相同。

    另外它也和解题者的样貌、文具没有任何关系。

    当然了。

    作为这次观测的发起人,徐云自然不会是前者。

    因此在写下一个解字后,他便继续开始绘制起了最初始的计算。

    至于计算的初始切入点嘛

    自然就是提丢斯波得定则了。

    众所周知。

    作为文明史的重要分支,人类的科学史可谓是众星云集,璨若星河。

    这些牛人基本上都是天才,但也不乏后起之秀凭借匪夷所思、骇世惊俗的猜想而跻身于巨星之列。

    比如法拉第,比如51岁才写出了5标准信道编码的埃尔达尔阿里坎。

    又比如某个叫做约翰提丢斯的德意志中学老师。

    约翰提丢斯生活在18世纪,那个时期,人们已知太阳系有六大行星。

    即水星、金星、地球、火星、木星、土星。

    提丢斯是个天文爱好者,经过长期的观测,他在1766年写下了这么一个数列:

    04032^。

    里头的是指行星到太阳的平均距离,也就是15亿公里。

    其中0,1,2,4,8,16,0以后数字为2的n次方。

    如果以日地距离也就是15亿公里为一个天文单位,那么六大行星到太阳距离的比值分别是:

    04、07、10、16、52、100。

    而实际上的数值是:

    039、071、10、152、52、98。

    是不是很惊讶?

    没错。

    在星空这个参考系中,两个结果可以说无限接近于一致。

    17年的时候,赫歇尔就是在接近196的位置上即数列中的第八项发现了天王星。

    从此,人们就对这一定则深信不疑了。

    根据这一定则。

    在数列的第五项即28的位置上也应该对应一颗行星或者小行星,只是在当时还没有被发现。

    于是许多天文学家和天文爱好者便以极大的热情,踏上了寻找这颗新行星的征程。

    这颗小行星就是谷神星,发现者正是现场的高斯。

    后来这个规律被柏林天文台的台长波得总结,归纳成了一个经验公式来表示,叫做提丢斯波得定则。

    说道这里,就又到了鞭尸某度百科的时间了。

    如果你在百度上搜索提丢斯波得定则,会在详细介绍中看到一句话:

    由于1846年发现的海王星、1930年发现的冥王星与该式的偏离很大,故许多人至今持否定态度”

    其中百科给出的海王星的推算数据是388个天文单位,实际距离302个天文单位。

    冥王星的推算数据是772个天文单位,实际距离396天文单位。

    是的,看到这里,天文专业的同学应该发现了一个问题:

    某度小编把冥王星的数据计算成了772这特么是太阳系内边界的距离

    实际上呢。

    在计算过程中,由于次多项式存在的缘故,冥王星和海王星是共用n8来计算的。

    所以根据提丢斯波得定则计算,冥王星的误差率是2,而非200。

    这是天体物理以及天体测量第二学期就会明确标注在课本上的内容,作为一个百科栏目居然会犯这种错误,也是挺无奈的

    上辈子徐云恰好有某段情节正好用到了提丢斯波得定则,在骚扰咳咳,咨询某位在凤凰山观测站工作的朋友时,对方一度对百科表达了某些极其亲切的问候与祝福。

    当然了。

    造成这种情况的很大部分因素要归结于知识的冷门,提丢斯波得定则本身就是个小众知识,更别说冥王星这个小众中的小众了。

    总而言之。

    后世对于提丢斯波得定则在数学计算的数值方面基本是没意见的。

    它的主要争议在于物理意义模糊,是一个纯粹的经验公式,很难从原理上进行解释。

    像n1n之类的其他测定方式,基本上也都是数学方面精准,但物理意义不明的情况。

    随后徐云又写下了两个个公式,也就是次多项式的函数和最小误差值:

    012233。

    ss0102。

    这样一来。

    只要找到合适的系数,就能令误差值最小了。

    而就在徐云优化函数的同时。

    其他人也没闲着,各自按着预定好的计划在行事。

    例如老汤正和来自格林威治天文台的技术人员拍摄着今天的星图,高斯则整理起了布莱德雷家族留下来的独门观测记录:

    “000066045001072261012684538043146853”

    众所周知。

    如果是需要仅仅通过数学来计算行星轨道数据,那么必然会用到开普勒行星三定律:

    第一定律:

    每一个行星都沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。

    第二定律:

    在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。

    也就是b。

    第三定律则是:

    各个行星绕太阳公转周期的平方,和它们的椭圆轨道的半长轴的立方成正比。

    即23,为行星周期,为常数。

    另外还需要用到笛卡尔坐标系下的椭圆曲线,即:

    220。

    有了这些,只要在加上某个工具就能进行计算了。

    后世科技发达,计算轨道的工具一般是np,几秒钟就能计算出结果。

    眼下虽然没有np协助,但这玩意儿的计算逻辑实际上就是最小二乘法。

    而最小二乘法的发明者不是别人,正是高斯

    “04314685301268453800107226120000660453”

    “下一组是031468531021538462012960373”

    

    (本章未完,请点击下一页继续阅读)
最新网址:m.llskw.org
上一章 回目录 下一页 存书签